Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
IEEE Transactions on Intelligent Transportation Systems ; 24(4):3759-3768, 2023.
Article in English | ProQuest Central | ID: covidwho-2278918

ABSTRACT

COVID-19 is a global pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2. While swift vaccine development and distribution have arrested the infection spread rate, it is necessary to design public policies that inform human mobility to curb outbreaks from future strains of the virus. While existing non-pharmaceutical approaches employing network science and machine learning offer promising travel policy solutions, they are guided by epidemiological and economic considerations alone and not human itineraries. We introduce an evolutionary algorithm (EA) based mobility scheduler that incorporates the personalized itineraries of individuals to determine the ideal timing of their mobility. We mathematically analyze the computational efficiency versus the optimality trade-off of the mobility scheduler. Through extensive simulations, we demonstrate that the EA-based mobility scheduler can balance the trade-off between (1) optimality and computational cost and (2) fair and preferential human mobility while reducing contagion under lockdown and no-lockdown as well as even and uneven human mobility traffic scenarios. We show that for two human mobility models, the scheduler exhibits lower infection numbers than a baseline trip-planning approach that directs human traffic along the least congested route to minimize contagion. We discuss that the EA scheduler lends itself to intricate mobility schedules of multiple destination choices with varying priorities and socioeconomic and demographic considerations.

2.
IEEE/ACM Trans Comput Biol Bioinform ; PP2023 Apr 06.
Article in English | MEDLINE | ID: covidwho-2278921

ABSTRACT

Vaccines have proven useful in curbing contagion from new strains of the SARS-CoV-2 virus. However, equitable vaccine allocation continues to be a significant challenge worldwide, necessitating a comprehensive allocation strategy incorporating heterogeneity in epidemiological and behavioral considerations. In this paper, we present a hierarchical allocation strategy that assigns vaccines to zones and their constituent neighborhoods cost-effectively, based on their population density, susceptibility, infected count, and attitude towards vaccinations. Moreover, it includes a module that tackles vaccine shortages in certain zones by locally transferring vaccines from zones with surplus vaccines. We leverage the epidemiological, socio-demographic, and social media datasets from Chicago and Greece and their constituent community areas to show that the proposed allocation approach assigns vaccines based on the chosen criteria and captures the effects of disparate vaccine adoption rates. We conclude the paper with a lowdown on future efforts to extend this study to design models for effective public policies and vaccination strategies that curtail vaccine purchase costs.

3.
IEEE Trans Emerg Top Comput Intell ; 5(3): 321-331, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-2213380

ABSTRACT

COVID-19 is the most acute global public health crisis of this century. Current trends in the global infected and death numbers suggest that human mobility leading to high social mixing are key players in infection spread, making it imperative to incorporate the spatiotemporal and mobility contexts to future prediction models. In this work, we present a generalized spatiotemporal model that quantifies the role of human social mixing propensity and mobility in pandemic spread through a composite latent factor. The proposed model calculates the exposed population count by utilizing a nonlinear least-squares optimization that exploits the intrinsic linearity in SEIR (Susceptible, Exposed, Infectious, or Recovered). We also present inverse coefficient of variation of the daily exposed curve as a measure for infection duration and spread. We carry out experiments on the mobility and COVID-19 infected and death curves of New York City to show that boroughs with high inter-zone mobility indeed exhibit synchronicity in peaks of the daily exposed curve as well as similar social mixing patterns. Furthermore, we demonstrate that several nations with high inverse coefficient of variations in daily exposed numbers are amongst the worst COVID-19 affected places. Our insights on the effects of lockdown on human mobility motivate future research in the identification of hotspots, design of intelligent mobility strategies and quarantine procedures to curb infection spread.

4.
Mathematics ; 10(20):3739, 2022.
Article in English | MDPI | ID: covidwho-2071619

ABSTRACT

Emerging diseases-and none as recently or devastatingly impactful toward humans as COVID-19-pose an immense challenge to researchers concerned with infectious disease. This study is tasked with expanding the computational probe of treatment regimes in a differential equations-based model of the SARS-CoV-2 host–virus interaction. Parameters within the model are tweaked to simulate dose specifications. Further, parametric variations are introduced in a timed manner to infer the importance of dose timing. Arming in silico testing, and eventually, clinical testing, with abundant information on simulated therapeutic regimes is the overall contribution of this pharmacodynamic model;thus, a wide range of dose and timing combinations are examined. Therapeutic interventions that block viral replication inhibit viral entry into host cells, and vaccination-induced antibodies are all studied alone and in combination. Especially during early detection, exhaustive parameter sweeps of well-suited within-host models are often the first step in the clinical response to a novel disease.

5.
Mathematics ; 10(19):3513, 2022.
Article in English | MDPI | ID: covidwho-2043853

ABSTRACT

SARS-CoV-2 continues to upend human life by posing novel threats related to disease spread and mutations. Current models for the disease burden of SARS-CoV-2 consider the aggregate nature of the virus without differentiating between the potency of its multiple strains. Hence, there is a need to create a fundamental modeling framework for multi-strain viruses that considers the competing viral pathogenic pathways. Alongside the consideration that other viral pathogens may coexist, there is also a need for a generalizable modeling framework to account for multiple epidemics (i.e., multi-demics) scenarios, such as influenza and COVID-19 occurring simultaneously. We present a fundamental network thermodynamics approach for assessing, determining, and predicting viral outbreak severity, which extends well-known standard epidemiological models. In particular, we use historical data from New York City's 2011–2019 influenza seasons and SARS-CoV-2 spread to identify the model parameters. In our model-based analysis, we employ a standard susceptible–infected–recovered (SIR) model with pertinent generalizations to account for multi-strain and multi-demics scenarios. We show that the reaction affinities underpinning the formation processes of our model can be used to categorize the severity of infectious or deceased populations. The spontaneity of occurrence captured by the change in Gibbs free energy of reaction (ΔG) in the system suggests the stability of forward occurring population transfers. The magnitude of ΔG is used to examine past influenza outbreaks and infer epidemiological factors, such as mortality and case burden. This method can be extrapolated for wide-ranging utility in computational epidemiology. The risk of overlapping multi-demics seasons between influenza and SARS-CoV-2 will persist as a significant threat in forthcoming years. Further, the possibility of mutating strains requires novel ways of analyzing the network of competing infection pathways. The approach outlined in this study allows for the identification of new stable strains and the potential increase in disease burden from a complex systems perspective, thereby allowing for a potential response to the significant question: are the effects of a multi-demic greater than the sum of its individual viral epidemics?

6.
Environ Microbiol ; 24(10): 4714-4724, 2022 10.
Article in English | MEDLINE | ID: covidwho-1948875

ABSTRACT

We investigated whether a set of phylogeographical tracked emergent events of Orthocoronavirinae were related to developed, urban and polluted environments worldwide. We explored coronavirus records in response to climate (rainfall parameters), population density, CO2 emission, Human Developmental Index (HDI) and deforestation. We contrasted environmental characteristics from regions with spillovers or encounters of wild Orthocoronavirinae against adjacent areas having best-preserved conditions. We used all complete sequenced CoVs genomes deposited in NCBI and GISAID databases until January 2021. Except for Deltacoronavirus, concentrated in Hong Kong and in birds, the other three genera were scattered all over the planet, beyond the original distribution of the subfamily, and found in humans, mammals, fishes and birds, wild or domestic. Spillovers and presence in wild animals were only reported in developed/densely populated places. We found significantly more occurrences reported in places with higher HDI, CO2 emission, or population density, along with more rainfall and more accentuated seasonality. Orthocoronavirinae occurred in areas with significantly higher human populations, CO2 emissions and deforestation rates than in adjacent locations. Intermediately disturbed ecosystems seemed more vulnerable for Orthocoronavirinae emergence than forested regions in frontiers of deforestation. Sadly, people experiencing poverty in an intensely consumerist society are the most vulnerable.


Subject(s)
Coronavirus Infections , Coronavirus , Animals , Carbon Dioxide , Conservation of Natural Resources , Ecosystem , Humans , Mammals
7.
Appl Netw Sci ; 6(1): 95, 2021.
Article in English | MEDLINE | ID: covidwho-1568434

ABSTRACT

COVID-19 is a global health crisis that has caused ripples in every aspect of human life. Amid widespread vaccinations testing, manufacture and distribution efforts, nations still rely on human mobility restrictions to mitigate infection and death tolls. New waves of infection in many nations, indecisiveness on the efficacy of existing vaccinations, and emerging strains of the virus call for intelligent mobility policies that utilize contact pattern and epidemiological data to check contagion. Our earlier work leveraged network science principles to design social distancing optimization approaches that show promise in slowing infection spread however, they prove to be computationally prohibitive and require complete knowledge of the social network. In this work, we present scalable and distributed versions of the optimization approaches based on Markov Chain Monte Carlo Gibbs sampling and grid-based spatial parallelization that tackle both the challenges faced by the optimization strategies. We perform extensive simulation experiments to show the ability of the proposed strategies to meet necessary network science measures and yield performance comparable to the optimal counterpart, while exhibiting significant speed-up. We study the scalability of the proposed strategies as well as their performance in realistic scenarios when a fraction of the population temporarily flouts the location recommendations.

8.
Viruses ; 13(10)2021 09 25.
Article in English | MEDLINE | ID: covidwho-1438747

ABSTRACT

Recently, two cases of complete remission of classical Hodgkin lymphoma (cHL) and follicular lymphoma (FL) after SARS-CoV-2 infection were reported. However, the precise molecular mechanism of this rare event is yet to be understood. Here, we hypothesize a potential anti-tumor immune response of SARS-CoV-2 and based on a computational approach show that: (i) SARS-CoV-2 Spike-RBD may bind to the extracellular domains of CD15, CD27, CD45, and CD152 receptors of cHL or FL and may directly inhibit cell proliferation. (ii) Alternately, upon internalization after binding to these CD molecules, the SARS-CoV-2 membrane (M) protein and ORF3a may bind to gamma-tubulin complex component 3 (GCP3) at its tubulin gamma-1 chain (TUBG1) binding site. (iii) The M protein may also interact with TUBG1, blocking its binding to GCP3. (iv) Both the M and ORF3a proteins may render the GCP2-GCP3 lateral binding where the M protein possibly interacts with GCP2 at its GCP3 binding site and the ORF3a protein to GCP3 at its GCP2 interacting residues. (v) Interactions of the M and ORF3a proteins with these gamma-tubulin ring complex components potentially block the initial process of microtubule nucleation, leading to cell-cycle arrest and apoptosis. (vi) The Spike-RBD may also interact with and block PD-1 signaling similar to pembrolizumab and nivolumab- like monoclonal antibodies and may induce B-cell apoptosis and remission. (vii) Finally, the TRADD interacting "PVQLSY" motif of Epstein-Barr virus LMP-1, that is responsible for NF-kB mediated oncogenesis, potentially interacts with SARS-CoV-2 Mpro, NSP7, NSP10, and spike (S) proteins, and may inhibit the LMP-1 mediated cell proliferation. Taken together, our results suggest a possible therapeutic potential of SARS-CoV-2 in lymphoproliferative disorders.


Subject(s)
COVID-19/metabolism , Lymphoma/immunology , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antineoplastic Agents/pharmacology , Binding Sites , COVID-19/complications , Glycoproteins/metabolism , Glycoproteins/ultrastructure , Humans , Immunity/immunology , Lymphoma/therapy , Lymphoma/virology , Models, Theoretical , Molecular Docking Simulation , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/ultrastructure , Viroporin Proteins/metabolism , Viroporin Proteins/ultrastructure
9.
Sci Rep ; 11(1): 17689, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1392894

ABSTRACT

COVID-19, a global pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 virus, has claimed millions of lives worldwide. Amid soaring contagion due to newer strains of the virus, it is imperative to design dynamic, spatiotemporal models to contain the spread of infection during future outbreaks of the same or variants of the virus. The reliance on existing prediction and contact tracing approaches on prior knowledge of inter- or intra-zone mobility renders them impracticable. We present a spatiotemporal approach that employs a network inference approach with sliding time windows solely on the date and number of daily infection numbers of zones within a geographical region to generate temporal networks capturing the influence of each zone on another. It helps analyze the spatial interaction among the hotspot or spreader zones and highly affected zones based on the flow of network contagion traffic. We apply the proposed approach to the daily infection counts of New York State as well as the states of USA to show that it effectively measures the phase shifts in the pandemic timeline. It identifies the spreaders and affected zones at different time points and helps infer the trajectory of the pandemic spread across the country. A small set of zones periodically exhibit a very high outflow of contagion traffic over time, suggesting that they act as the key spreaders of infection. Moreover, the strong influence between the majority of non-neighbor regions suggests that the overall spread of infection is a result of the unavoidable long-distance trips by a large number of people as opposed to the shorter trips at a county level, thereby informing future mitigation measures and public policies.


Subject(s)
COVID-19 , Contact Tracing , Databases, Factual , Pandemics , COVID-19/epidemiology , COVID-19/transmission , Humans , New York/epidemiology , Public Health , SARS-CoV-2
10.
Front Immunol ; 12: 663912, 2021.
Article in English | MEDLINE | ID: covidwho-1325523

ABSTRACT

The Spike (S) protein of the SARS-CoV-2 virus is critical for its ability to attach and fuse into the host cells, leading to infection, and transmission. In this review, we have initially performed a meta-analysis of keywords associated with the S protein to frame the outline of important research findings and directions related to it. Based on this outline, we have reviewed the structure, uniqueness, and origin of the S protein of SARS-CoV-2. Furthermore, the interactions of the Spike protein with host and its implications in COVID-19 pathogenesis, as well as drug and vaccine development, are discussed. We have also summarized the recent advances in detection methods using S protein-based RT-PCR, ELISA, point-of-care lateral flow immunoassay, and graphene-based field-effect transistor (FET) biosensors. Finally, we have also discussed the emerging Spike mutants and the efficacy of the Spike-based vaccines against those strains. Overall, we have covered most of the recent advances on the SARS-CoV-2 Spike protein and its possible implications in countering this virus.


Subject(s)
SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19/virology , COVID-19 Testing , COVID-19 Vaccines/immunology , Host-Pathogen Interactions , Humans , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Species Specificity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Drug Treatment
11.
IEEE Access ; 9: 78341-78355, 2021.
Article in English | MEDLINE | ID: covidwho-1263743

ABSTRACT

COVID-19 is a global health crisis that has altered human life and still promises to create ripples of death and destruction in its wake. The sea of scientific literature published over a short time-span to understand and mitigate this global phenomenon necessitates concerted efforts to organize our findings and focus on the unexplored facets of the disease. In this work, we applied natural language processing (NLP) based approaches on scientific literature published on COVID-19 to infer significant keywords that have contributed to our social, economic, demographic, psychological, epidemiological, clinical, and medical understanding of this pandemic. We identify key terms appearing in COVID literature that vary in representation when compared to other virus-borne diseases such as MERS, Ebola, and Influenza. We also identify countries, topics, and research articles that demonstrate that the scientific community is still reacting to the short-term threats such as transmissibility, health risks, treatment plans, and public policies, underpinning the need for collective international efforts towards long-term immunization and drug-related challenges. Furthermore, our study highlights several long-term research directions that are urgently needed for COVID-19 such as: global collaboration to create international open-access data repositories, policymaking to curb future outbreaks, psychological repercussions of COVID-19, vaccine development for SARS-CoV-2 variants and their long-term efficacy studies, and mental health issues in both children and elderly.

12.
Soc Sci Humanit Open ; 4(1): 100163, 2021.
Article in English | MEDLINE | ID: covidwho-1225407

ABSTRACT

COVID-19, declared by the World Health Organization as a Public Health Emergency of International Concern, has claimed over 2.7 million lives worldwide. In the absence of vaccinations, social distancing and lockdowns emerged as the means to curb infection spread, with the downside of bringing the world economy to a standstill. In this work, we explore the epidemiological, socioeconomic and demographic factors affecting the unemployment rates of United States that may contribute towards policymaking to contain contagion and mortality while balancing the economy in the future. We identify the ethnic groups and job sectors that are affected by the pandemic and demonstrate that Gross Domestic Product (GDP), race, age group, lockdown severity and infected count are the key indicators of post-COVID job loss trends.

13.
Viruses ; 13(4)2021 04 18.
Article in English | MEDLINE | ID: covidwho-1194710

ABSTRACT

The COVID-19 pandemic has infected millions worldwide, leaving a global burden for long-term care of COVID-19 survivors. It is thus imperative to study post-COVID (i.e., short-term) and long-COVID (i.e., long-term) effects, specifically as local and systemic pathophysiological outcomes of other coronavirus-related diseases (such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS)) were well-cataloged. We conducted a comprehensive review of adverse post-COVID health outcomes and potential long-COVID effects. We observed that such adverse outcomes were not localized. Rather, they affected different human systems, including: (i) immune system (e.g., Guillain-Barré syndrome, rheumatoid arthritis, pediatric inflammatory multisystem syndromes such as Kawasaki disease), (ii) hematological system (vascular hemostasis, blood coagulation), (iii) pulmonary system (respiratory failure, pulmonary thromboembolism, pulmonary embolism, pneumonia, pulmonary vascular damage, pulmonary fibrosis), (iv) cardiovascular system (myocardial hypertrophy, coronary artery atherosclerosis, focal myocardial fibrosis, acute myocardial infarction, cardiac hypertrophy), (v) gastrointestinal, hepatic, and renal systems (diarrhea, nausea/vomiting, abdominal pain, anorexia, acid reflux, gastrointestinal hemorrhage, lack of appetite/constipation), (vi) skeletomuscular system (immune-mediated skin diseases, psoriasis, lupus), (vii) nervous system (loss of taste/smell/hearing, headaches, spasms, convulsions, confusion, visual impairment, nerve pain, dizziness, impaired consciousness, nausea/vomiting, hemiplegia, ataxia, stroke, cerebral hemorrhage), (viii) mental health (stress, depression and anxiety). We additionally hypothesized mechanisms of action by investigating possible molecular mechanisms associated with these disease outcomes/symptoms. Overall, the COVID-19 pathology is still characterized by cytokine storm that results to endothelial inflammation, microvascular thrombosis, and multiple organ failures.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Systemic Inflammatory Response Syndrome/complications , Systemic Inflammatory Response Syndrome/physiopathology , Cardiovascular System , Diarrhea , Guillain-Barre Syndrome , Hemostasis , Humans , Immune System , Inflammation , Mental Health , Nervous System , Pandemics , SARS-CoV-2 , Severe Acute Respiratory Syndrome , Thrombosis
14.
Mol Omics ; 17(2): 317-337, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1121648

ABSTRACT

Comprehensive clinical pictures, comorbid conditions, and long-term complications of COVID-19 are still unknown. Recently, using a multi-omics-based strategy, we predicted potential drugs for COVID-19 with ∼70% accuracy. Herein, using a novel multi-omics-based bioinformatic approach and three ways of analysis, we identified the symptoms, comorbid conditions, and short-, mid-, and possible long-term complications of COVID-19 with >90% precision including 27 parent, 170 child, and 403 specific conditions. Among the specific conditions, 36 viral, 53 short-term, 62 short-mid-long-term, 194 mid-long-term, and 57 congenital conditions are identified. At a threshold "count of occurrence" of 4, we found that 83-100% (average 92.67%) of enriched conditions are associated with COVID-19. Except for dry cough and loss of taste, all the other COVID-19-associated mild and severe symptoms are enriched. CVDs, and pulmonary, metabolic, musculoskeletal, neuropsychiatric, kidney, liver, and immune system disorders are top comorbid conditions. Specific diseases like myocardial infarction, hypertension, COPD, lung injury, diabetes, cirrhosis, mood disorders, dementia, macular degeneration, chronic kidney disease, lupus, arthritis, etc. along with several other NCDs were found to be top candidates. Interestingly, many cancers and congenital disorders associated with COVID-19 severity are also identified. Arthritis, gliomas, diabetes, psychiatric disorders, and CVDs having a bidirectional relationship with COVID-19 are also identified as top conditions. Based on our accuracy (>90%), the long-term presence of SARS-CoV-2 RNA in human, and our "genetic remittance" assumption, we hypothesize that all the identified top-ranked conditions could be potential long-term consequences in COVID-19 survivors, warranting long-term observational studies.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Genomics/methods , COVID-19/genetics , COVID-19/metabolism , Comorbidity , Humans , Severity of Illness Index , Post-Acute COVID-19 Syndrome
15.
IEEE Access ; 9: 26196-26207, 2021.
Article in English | MEDLINE | ID: covidwho-1109391

ABSTRACT

COVID-19 has irreversibly upended the course of human life and compelled countries to invoke national emergencies and strict public guidelines. As the scientific community is in the early stages of rigorous clinical testing to come up with effective vaccination measures, the world is still heavily reliant on social distancing to curb the rapid spread and mortality rates. In this work, we present three optimization strategies to guide human mobility and restrict contact of susceptible and infective individuals. The proposed strategies rely on well-studied concepts of network science, such as clustering and homophily, as well as two different scenarios of the SEIRD epidemic model. We also propose a new metric, called contagion potential, to gauge the infectivity of individuals in a social setting. Our extensive simulation experiments show that the recommended mobility approaches slow down spread considerably when compared against several standard human mobility models. Finally, as a case study of the mobility strategies, we introduce a mobile application, MyCovid, that provides periodic location recommendations to the registered app users.

16.
Appl Netw Sci ; 6(1): 2, 2021.
Article in English | MEDLINE | ID: covidwho-1014271

ABSTRACT

COVID-19 is one of the deadliest pandemics in modern human history that has killed nearly a million people and rapidly inundated the healthcare resources around the world. Current lockdown measures to curb infection spread are threatening to bring the world economy to a halt, necessitating dynamic lockdown policies that incorporate the healthcare resource budget of people in a zone. We conceive a dynamic pandemic lockdown strategy that employs reinforcement learning to modulate the zone mobility, while restricting the COVID-19 hospitalizations within its healthcare resource budget. We employ queueing theory to model the inflow and outflow of patients and validate the approach through extensive simulation on real demographic and epidemiological data from the boroughs of New York City. Our experiments demonstrate that this approach can not only adapt to the varying trends in contagion in a region by regulating its own lockdown level, but also manages the overheads associated with time-varying dynamic lockdown policies.

17.
Soc Sci Humanit Open ; 3(1): 100098, 2021.
Article in English | MEDLINE | ID: covidwho-969048

ABSTRACT

Lockdown measures to curb the spread of COVID-19 has brought the world economy on the brink of a recession. It is imperative that nations formulate administrative policies based on the changing economic landscape. In this work, we apply a statistical approach, called topic modeling, on text documents of job loss notices of 26 US states to identify the specific states and industrial sectors affected economically by this ongoing public health crisis. Our analysis reveals that there is a considerable incongruity in job loss patterns between the pre- and during-COVID timelines in several states and the recreational and philanthropic sectors register high job losses. It further shows that the interplay among several possible socioeconomic factors would lead to job losses in many sectors, while also creating new job opportunities in other sectors such as public service, pharmaceuticals and media, making the job loss trends a key indicator of the world economy. Finally, we compare the low income job loss rates against overall job losses due to COVID-19 in the US counties, and discuss the implications of press reports on reopening businesses and the unemployed workforce being absorbed by other sectors.

18.
Comput Biol Med ; 126: 104051, 2020 11.
Article in English | MEDLINE | ID: covidwho-891300

ABSTRACT

SARS-CoV-2 has ushered a global pandemic with no effective drug being available at present. Although several FDA-approved drugs are currently under clinical trials for drug repositioning, there is an on-going global effort for new drug identification. In this paper, using multi-omics (interactome, proteome, transcriptome, and bibliome) data and subsequent integrated analysis, we present the biological events associated with SARS-CoV-2 infection and identify several candidate drugs against this viral disease. We found that: (i) Interactome-based infection pathways differ from the other three omics-based profiles. (ii) Viral process, mRNA splicing, cytokine and interferon signaling, and ubiquitin mediated proteolysis are important pathways in SARS-CoV-2 infection. (iii) SARS-CoV-2 infection also shares pathways with Influenza A, Epstein-Barr virus, HTLV-I, Measles, and Hepatitis virus. (iv) Further, bacterial, parasitic, and protozoan infection pathways such as Tuberculosis, Malaria, and Leishmaniasis are also shared by this virus. (v) A total of 50 candidate drugs, including the prophylaxis agents and pathway specific inhibitors are identified against COVID-19. (vi) Betamethasone, Estrogen, Simvastatin, Hydrocortisone, Tositumomab, Cyclosporin A etc. are among the important drugs. (vii) Ozone, Nitric oxide, plasma components, and photosensitizer drugs are also identified as possible therapeutic candidates. (viii) Curcumin, Retinoic acids, Vitamin D, Arsenic, Copper, and Zinc may be the candidate prophylaxis agents. Nearly 70% of our identified agents are previously suggested to have anti-COVID-19 effects or under clinical trials. Among our identified drugs, the ones that are not yet tested, need validation with caution while an appropriate drug combination from these candidate drugs along with a SARS-CoV-2 specific antiviral agent is needed for effective COVID-19 management.


Subject(s)
Antiviral Agents , Betacoronavirus , Coronavirus Infections , Databases, Genetic , Drug Discovery , Models, Biological , Pandemics , Pneumonia, Viral , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Coronavirus Infections/metabolism , Humans , Pneumonia, Viral/drug therapy , Pneumonia, Viral/genetics , Pneumonia, Viral/metabolism , Proteomics , SARS-CoV-2
19.
PLoS One ; 15(10): e0241165, 2020.
Article in English | MEDLINE | ID: covidwho-890191

ABSTRACT

BACKGROUND: After claiming nearly five hundred thousand lives globally, the COVID-19 pandemic is showing no signs of slowing down. While the UK, USA, Brazil and parts of Asia are bracing themselves for the second wave-or the extension of the first wave-it is imperative to identify the primary social, economic, environmental, demographic, ethnic, cultural and health factors contributing towards COVID-19 infection and mortality numbers to facilitate mitigation and control measures. METHODS: We process several open-access datasets on US states to create an integrated dataset of potential factors leading to the pandemic spread. We then apply several supervised machine learning approaches to reach a consensus as well as rank the key factors. We carry out regression analysis to pinpoint the key pre-lockdown factors that affect post-lockdown infection and mortality, informing future lockdown-related policy making. FINDINGS: Population density, testing numbers and airport traffic emerge as the most discriminatory factors, followed by higher age groups (above 40 and specifically 60+). Post-lockdown infected and death rates are highly influenced by their pre-lockdown counterparts, followed by population density and airport traffic. While healthcare index seems uncorrelated with mortality rate, principal component analysis on the key features show two groups: states (1) forming early epicenters and (2) experiencing strong second wave or peaking late in rate of infection and death. Finally, a small case study on New York City shows that days-to-peak for infection of neighboring boroughs correlate better with inter-zone mobility than the inter-zone distance. INTERPRETATION: States forming the early hotspots are regions with high airport or road traffic resulting in human interaction. US states with high population density and testing tend to exhibit consistently high infected and death numbers. Mortality rate seems to be driven by individual physiology, preexisting condition, age etc., rather than gender, healthcare facility or ethnic predisposition. Finally, policymaking on the timing of lockdowns should primarily consider the pre-lockdown infected numbers along with population density and airport traffic.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/mortality , Pneumonia, Viral/epidemiology , Pneumonia, Viral/mortality , Policy Making , Population Density , Quarantine/methods , Travel , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Female , Humans , Infant , Infant, Newborn , Interpersonal Relations , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2 , Supervised Machine Learning , Time Factors , United States/epidemiology , Young Adult
20.
Infez Med ; 28(3): 302-311, 2020 Sep 01.
Article in English | MEDLINE | ID: covidwho-757657

ABSTRACT

SARS-CoV-2 has created a global disaster by infecting millions of people and causing thousands of deaths across hundreds of countries. Currently, the infection is in its exponential phase in several countries and there is no sign of immediate relief from this deadly virus. At the same time, some "conspiracy theories" have arisen on the origin of this virus due to the lack of a "definite origin". To understand if this controversy is also reflected in scientific publications, here, we reviewed the key articles published at initial stages of the COVID-19 pandemic (January 01, 2020 to April 30, 2020) related to the zoonotic origin of SARS-CoV-2 and the articles opposing the "conspiracy theories". We also provide an overview on the current knowledge on SARS-CoV-2 Spike as well as the Coronavirus research domain. Furthermore, a few important points related to the "conspiracy theories" such as "laboratory engineering" or "bioweapon" aspects of SARS-CoV-2 are also reviewed. In this article, we have only considered the peer-reviewed publications that are indexed in PubMed and other official publications, and we have directly quoted the authors' statements from their respective articles to avoid any controversy.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Genetic Engineering/methods , Pneumonia, Viral/virology , Selection, Genetic , Animals , Biohazard Release , Biological Warfare Agents , COVID-19 , Chiroptera/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Dissent and Disputes , Eutheria/classification , Eutheria/virology , Global Health/statistics & numerical data , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Recombination, Genetic , SARS-CoV-2 , Sequence Alignment , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL